2 Introduction

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter 2. If you do not manually label them, there will be automatic labels anyway, e.g., Chapter 4.

Figures and tables with captions will be placed in figure and table environments, respectively.

par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
Here is a nice figure!

Figure 2.1: Here is a nice figure!

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 2.1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 2.1.

knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
Table 2.1: Here is a nice table!
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 1.4 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 3.8 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa

You can write citations, too. For example, we are using the bookdown package (Xie 2020) in this sample book, which was built on top of R Markdown and knitr (Xie 2015).

2.1 Here adding new test

library(pins)
board_register(name = "pins_board", url = "https://raw.githubusercontent.com/predictcrypto/pins/master/", board = "datatxt")
cryptodata <- pin_get(name = "hitBTC_orderbook")

Show data

cryptodata
## # A tibble: 244,443 x 27
##    pair  symbol quote_currency ask_1_price ask_1_quantity ask_2_price
##    <chr> <chr>  <chr>                <dbl>          <dbl>       <dbl>
##  1 BTCU… BTC    USD             16290.             0.0589  16290.    
##  2 ETHU… ETH    USD               462.             0.4       463.    
##  3 EOSU… EOS    USD                 2.46         600           2.46  
##  4 LTCU… LTC    USD                60.7            3.75       60.7   
##  5 BSVU… BSV    USD               158.             0.6       158.    
##  6 ADAU… ADA    USD                 0.105        775           0.105 
##  7 ZECU… ZEC    USD                63.0            2.59       63.1   
##  8 TRXU… TRX    USD                 0.0249     65497           0.0249
##  9 HTUSD HT     USD                 3.64         105.          3.65  
## 10 XMRU… XMR    USD               112.             0.023     112.    
## # … with 244,433 more rows, and 21 more variables: ask_2_quantity <dbl>,
## #   ask_3_price <dbl>, ask_3_quantity <dbl>, ask_4_price <dbl>,
## #   ask_4_quantity <dbl>, ask_5_price <dbl>, ask_5_quantity <dbl>,
## #   bid_1_price <dbl>, bid_1_quantity <dbl>, bid_2_price <dbl>,
## #   bid_2_quantity <dbl>, bid_3_price <dbl>, bid_3_quantity <dbl>,
## #   bid_4_price <dbl>, bid_4_quantity <dbl>, bid_5_price <dbl>,
## #   bid_5_quantity <dbl>, date_time_utc <dttm>, date <date>, pkDummy <chr>,
## #   pkey <chr>

Show nested data

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✔ ggplot2 3.3.2     ✔ purrr   0.3.4
## ✔ tibble  3.0.4     ✔ dplyr   1.0.2
## ✔ tidyr   1.1.2     ✔ stringr 1.4.0
## ✔ readr   1.4.0     ✔ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
cryptodata <- group_by(cryptodata, symbol)
nest(cryptodata)
## # A tibble: 218 x 2
## # Groups:   symbol [218]
##    symbol data                 
##    <chr>  <list>               
##  1 BTC    <tibble [2,292 × 26]>
##  2 ETH    <tibble [1,416 × 26]>
##  3 EOS    <tibble [2,245 × 26]>
##  4 LTC    <tibble [2,292 × 26]>
##  5 BSV    <tibble [1,535 × 26]>
##  6 ADA    <tibble [1,178 × 26]>
##  7 ZEC    <tibble [1,133 × 26]>
##  8 TRX    <tibble [1,513 × 26]>
##  9 HT     <tibble [2,227 × 26]>
## 10 XMR    <tibble [2,286 × 26]>
## # … with 208 more rows

What does DT look like

library(DT)
cryptodata
## # A tibble: 244,443 x 27
## # Groups:   symbol [218]
##    pair  symbol quote_currency ask_1_price ask_1_quantity ask_2_price
##    <chr> <chr>  <chr>                <dbl>          <dbl>       <dbl>
##  1 BTCU… BTC    USD             16290.             0.0589  16290.    
##  2 ETHU… ETH    USD               462.             0.4       463.    
##  3 EOSU… EOS    USD                 2.46         600           2.46  
##  4 LTCU… LTC    USD                60.7            3.75       60.7   
##  5 BSVU… BSV    USD               158.             0.6       158.    
##  6 ADAU… ADA    USD                 0.105        775           0.105 
##  7 ZECU… ZEC    USD                63.0            2.59       63.1   
##  8 TRXU… TRX    USD                 0.0249     65497           0.0249
##  9 HTUSD HT     USD                 3.64         105.          3.65  
## 10 XMRU… XMR    USD               112.             0.023     112.    
## # … with 244,433 more rows, and 21 more variables: ask_2_quantity <dbl>,
## #   ask_3_price <dbl>, ask_3_quantity <dbl>, ask_4_price <dbl>,
## #   ask_4_quantity <dbl>, ask_5_price <dbl>, ask_5_quantity <dbl>,
## #   bid_1_price <dbl>, bid_1_quantity <dbl>, bid_2_price <dbl>,
## #   bid_2_quantity <dbl>, bid_3_price <dbl>, bid_3_quantity <dbl>,
## #   bid_4_price <dbl>, bid_4_quantity <dbl>, bid_5_price <dbl>,
## #   bid_5_quantity <dbl>, date_time_utc <dttm>, date <date>, pkDummy <chr>,
## #   pkey <chr>

And nested

nest(cryptodata)
## # A tibble: 218 x 2
## # Groups:   symbol [218]
##    symbol data                 
##    <chr>  <list>               
##  1 BTC    <tibble [2,292 × 26]>
##  2 ETH    <tibble [1,416 × 26]>
##  3 EOS    <tibble [2,245 × 26]>
##  4 LTC    <tibble [2,292 × 26]>
##  5 BSV    <tibble [1,535 × 26]>
##  6 ADA    <tibble [1,178 × 26]>
##  7 ZEC    <tibble [1,133 × 26]>
##  8 TRX    <tibble [1,513 × 26]>
##  9 HT     <tibble [2,227 × 26]>
## 10 XMR    <tibble [2,286 × 26]>
## # … with 208 more rows

References

Xie, Yihui. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. http://yihui.name/knitr/.

Xie, Yihui. 2020. Bookdown: Authoring Books and Technical Documents with R Markdown. https://github.com/rstudio/bookdown.